Steam maintenance的問題,透過圖書和論文來找解法和答案更準確安心。 我們找到下列包括賽程、直播線上看和比分戰績懶人包

Steam maintenance的問題,我們搜遍了碩博士論文和台灣出版的書籍,推薦Cattant, François寫的 Materials Ageing in Light-Water Reactors: Handbook of Destructive Assays 和Koester, Tony的 Steam & Diesel Locomotive Servicing Terminals: Layout Design and Planning都 可以從中找到所需的評價。

另外網站Predictive Maintenance of a Steam Turbine Video - MathWorks也說明:Learn how Sasol engineers implemented an end-to-end predictive maintenance program for steam turbines at the Sasol refinery.

這兩本書分別來自 和所出版 。

國立清華大學 工程與系統科學系 葉宗洸、王美雅所指導 施湘鈴的 水化學控制對於壓水式反應器一次側水環境 600合金與316L不銹鋼的應力腐蝕龜裂影響之研究 (2021),提出Steam maintenance關鍵因素是什麼,來自於應力腐蝕龜裂、鎳基600合金、316L不銹鋼、慢應變速率拉伸試驗、硼/鋰濃度、溶氫量。

而第二篇論文國立高雄科技大學 工學院工程科技博士班 王振華所指導 陸彥儒的 應用有限元素法發展高階適用性評估技術探討局部減薄缺陷幾何變異對承壓設備殘餘強度之影響 (2021),提出因為有 有限元素法、殘餘強度係數、塑性崩塌負載、適用性評估、局部減薄缺陷的重點而找出了 Steam maintenance的解答。

最後網站Turbine Steam Path: Maintenance and Repair - 博客來則補充:書名:Turbine Steam Path: Maintenance and Repair,語言:英文,ISBN:9780878147878,作者:Sanders, William P.,出版日期:2001/01/01,類別:自然科普.

接下來讓我們看這些論文和書籍都說些什麼吧:

除了Steam maintenance,大家也想知道這些:

Materials Ageing in Light-Water Reactors: Handbook of Destructive Assays

為了解決Steam maintenance的問題,作者Cattant, François 這樣論述:

François Cattant graduated in chemical engineering in 1974 and joined Electricity of France (EDF) in 1975 as a chemical engineer in the Plant Operation Division working on the water and steam conditioning of power plants. Two years later, he moved to the hot laboratory at the Chinon Nuclear Power Pl

ant to examine failures and do root cause analysis of gas-cooled reactor components, including fuel. In 1980, he became the manager of a regional section for water and steam chemistry, chemical cleaning and non-destructive examination in fossil stations. He returned to the Chinon hot laboratory 3 ye

ars later where he continued to focus on failure root cause analysis of irradiated or contaminated components, monitoring of reactor pressure vessel (RPV) irradiation programs, examination of steam generator tubes, RPV head penetrations, split pins, pressurizer nozzles, valves, reactor cooling syste

m cast elbows, piping, fuel bundle and rods, rod cluster control assemblies, and much more.During 1995-1998, he was assigned as an expatriate engineer to the Nuclear Maintenance Applications Center of the Electric Power Research Institute in the USA where he worked on nuclear plant maintenance issue

s. While at EPRI, he also participated as an outside expert on the examination of Ringhals 3 retired steam generator. Returning back in France in 1998, François joined EDF R&D Materials and Mechanics of Components Department as a scientific advisor and senior engineer. His work involved chemistry, c

orrosion, and metallurgy with special attention to primary water chemistry, source term reduction, primary water corrosion, corrosion mitigation and repair, fuel cleaning and innovation strategies. He continued to serve as the EDF representative to the EPRI’s Materials Reliability Program. In this c

apacity, he participated in several destructive examinations such as North Anna Unit 2 RPV head penetrations, South Texas Project Unit 1 Bottom Mounted Instrumentation, Braidwood Unit 1 pressurizer heater #52 and San Onofre Unit 3 CEDM #64. From 2004 to 2008, he was the president of the "Materials,

Non-Destructive Testing and Chemistry" section of the "French Nuclear Energy Society", and from 2008 to 2009, he was in charge of the International Partnerships of the Materials Ageing Institute (MAI). Subsequent to his retirement from EDF in 2009, he was commissioned by the MAI to collect details a

nd produce summaries of destructive examinations performed on failures in light-water reactor components in France, USA, Japan, and Sweden which have now been compiled in this unique handbook. In 2014, the French Nuclear Energy Society awarded its "Grand Prix" to this "Handbook of Destructive Assays

". Ten years later, the MAI asked him to update this handbook, with both domestic and international recent field experience.

水化學控制對於壓水式反應器一次側水環境 600合金與316L不銹鋼的應力腐蝕龜裂影響之研究

為了解決Steam maintenance的問題,作者施湘鈴 這樣論述:

鎳基合金600 (Alloy 600)與沃斯田鐵不銹鋼316L (SS 316L)為壓水式反應器(Pressurized Water Reactor, PWR)常見的結構組件材料,然而在電廠長期運轉下,結構組件腐蝕劣化問題層出不窮,如一次側冷卻水應力腐蝕龜裂(Primary Water Stress Corrosion Cracking, PWSCC)。為減緩腐蝕問題,各國電廠對於PWR進行了適當的水化學調控,如添加氫氣、控制pH值、硼酸濃度與氫氧化鋰濃度等。添加氫氣用以降低水環境因輻射分解反應而提高的氧化性,並減緩組件材料劣化,然而在目前EPRI規範的溶氫濃度25-50 cc⁄kg H2O

與運轉溫度320-360℃下,仍有PWSCC發生,因此各國核電廠考慮調整溶氫濃度至5 cc/kg H2O以下,或75 cc/kg H2O以上。此外,於水迴路中添加硼酸以控制中子反應度,添加氫氧化鋰則用於平衡水環境的pH值。但隨著燃料週期的燃耗,硼濃度逐漸下降,氫氧化鋰濃度也需有所調整。藉由溶氫(dissolved hydrogen, DH)濃度與pH值的調控,可使材料避開Ni/NiO的相轉換點,進而減緩PWSCC發生。因此本研究將探討燃料週期初期(Beginning of Cycle, BOC)與末期(End of Cycle, EOC)水環境在溶氫濃度降低至5 cc/kg H2O的條件下,對

於Alloy 600與SS 316L所造成的影響。本研究透過模擬PWR一次側水環境,對於Alloy 600與SS 316L進行慢應變速率拉伸試驗(Slow Strain Rate Test, SSRT)。實驗先將Alloy 600與SS 316L試棒進行固溶退火熱處理(SA)後,再分別進行單一階段時效處理(TT)與敏化熱處理(SEN)並預長氧化膜。而後模擬燃料週期初期與末期,在320℃與溶氫濃度為5 cc/kg H2O的水環境下進行SSRT試驗,分析材料應力腐蝕龜裂(Stress Corrosion Cracking, SCC)行為,並對於試棒破斷面與表面氧化膜形貌進行觀察與分析。實驗結果顯示

,對於Alloy 600而言,TT試棒在1200 ppm B + 3.5 ppm Li溶氫條件下展現最差的機械性質,但無論是除氧或溶氫環境,Alloy 600都表現出較低的SCC敏感性。而SS 316L SEN試棒在300 ppm B + 1 ppm Li溶氫條件下的最大抗拉強度(Ultimate Tensile Strength, UTS)與降伏強度(Yield Strength, YS)表現最差,然而實驗結果顯示溶氫可有效降低SEN試棒的SCC敏感性。Alloy 600表面氧化膜主要由尖晶石氧化物(spinel oxide) NiFe2O4、Cr2O3與NiO所構成,SS 316L的表面氧

化膜則以α-Fe2O3、γ-Fe2O3、尖晶石氧化物NiFe2O4與Fe3O4為主。

Steam & Diesel Locomotive Servicing Terminals: Layout Design and Planning

為了解決Steam maintenance的問題,作者Koester, Tony 這樣論述:

This all-new book by Tony Koester explains how steam, diesel, and electric servicing facilities work, with details on the processes and equipment that can be replicated on model railroad layouts. The book includes: An overview of locomotive maintenance. Model railroad track plans and modeling exampl

es. Prototype photos of servicing terminals, roundhouses, turntables, sand houses and towers, and more.

應用有限元素法發展高階適用性評估技術探討局部減薄缺陷幾何變異對承壓設備殘餘強度之影響

為了解決Steam maintenance的問題,作者陸彥儒 這樣論述:

承壓設備存有局部減薄時,不僅左右工廠的可操作性,同時也影響製程的潛在風險。適用性評估標準,發展至今,已是全世界廣泛使用的缺陷評估標準。其中又以API 579最負盛名。標準中定義殘餘強度係數(RSF)來評估受損結構的堪用性,並設定容許值。由於RSF計算並不容易,因此該標準依照保守程度、分析困難度,分成三個等級。其中最高等級的Level 3是使用數值分析方法。在過去,有許多研究文章,使用簡化作法(如:使用簡化的厚度輪廓、對稱分析、二維分析、子結構等),或者使用者自行定義RSF來分析堪用性。這些做法雖實務可行,但這並不符合標準作法,可能也會使分析結果過於樂觀。本研究將對前述常使使用的簡化作法進行分

析,並比較其差異。另外,本研究為了解前述各類項目如何影響RSF的精準度,以有限元素法為基礎,建立局部減薄缺陷的API 579 Level 3分析作法。本文有以下幾個重要成果及發現:1.建立API 579 Level 3評估程序;2.發現缺陷採用子模型,能維持分析精準度的同時,提升運算效率;3.外部LTA的實際殘餘強度,是低於相同尺寸的內部LTA的殘餘強度;4.由於LTA缺陷僅佔設備一小部分,因此通常被視為簡化的幾何形狀。但本篇的研究結果表明,所有簡化的厚度輪廓都會RSF,因應謹慎使用;5.通常認為較寬(即影響範圍較大)的減薄缺陷,被認為具有較低的RSF。但是,本研究表明,因應力集中效應,狹窄的

缺陷實際上更加危險。